Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Front Immunol ; 13: 940756, 2022.
Article in English | MEDLINE | ID: covidwho-2141958

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evades the host immune system through a variety of regulatory mechanisms. The genome of SARS-CoV-2 encodes 16 non-structural proteins (NSPs), four structural proteins, and nine accessory proteins that play indispensable roles to suppress the production and signaling of type I and III interferons (IFNs). In this review, we discussed the functions and the underlying mechanisms of different proteins of SARS-CoV-2 that evade the host immune system by suppressing the IFN-ß production and TANK-binding kinase 1 (TBK1)/interferon regulatory factor 3 (IRF3)/signal transducer and activator of transcription (STAT)1 and STAT2 phosphorylation. We also described different viral proteins inhibiting the nuclear translocation of IRF3, nuclear factor-κB (NF-κB), and STATs. To date, the following proteins of SARS-CoV-2 including NSP1, NSP6, NSP8, NSP12, NSP13, NSP14, NSP15, open reading frame (ORF)3a, ORF6, ORF8, ORF9b, ORF10, and Membrane (M) protein have been well studied. However, the detailed mechanisms of immune evasion by NSP5, ORF3b, ORF9c, and Nucleocapsid (N) proteins are not well elucidated. Additionally, we also elaborated the perspectives of SARS-CoV-2 proteins.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Immune Evasion , Interferons/metabolism , Viral Proteins
2.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1999317

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evades the host immune system through a variety of regulatory mechanisms. The genome of SARS-CoV-2 encodes 16 non-structural proteins (NSPs), four structural proteins, and nine accessory proteins that play indispensable roles to suppress the production and signaling of type I and III interferons (IFNs). In this review, we discussed the functions and the underlying mechanisms of different proteins of SARS-CoV-2 that evade the host immune system by suppressing the IFN-β production and TANK-binding kinase 1 (TBK1)/interferon regulatory factor 3 (IRF3)/signal transducer and activator of transcription (STAT)1 and STAT2 phosphorylation. We also described different viral proteins inhibiting the nuclear translocation of IRF3, nuclear factor-κB (NF-κB), and STATs. To date, the following proteins of SARS-CoV-2 including NSP1, NSP6, NSP8, NSP12, NSP13, NSP14, NSP15, open reading frame (ORF)3a, ORF6, ORF8, ORF9b, ORF10, and Membrane (M) protein have been well studied. However, the detailed mechanisms of immune evasion by NSP5, ORF3b, ORF9c, and Nucleocapsid (N) proteins are not well elucidated. Additionally, we also elaborated the perspectives of SARS-CoV-2 proteins.

3.
RSC advances ; 11(48):30132-30147, 2021.
Article in English | EuropePMC | ID: covidwho-1812811

ABSTRACT

Continuing reports of new SARS-CoV-2 variants have caused worldwide concern and created a challenging situation for clinicians. The recently reported variant B.1.618, which possesses the E484K mutation specific to the receptor-binding domain (RBD), as well as two deletions of Tyr145 and His146 at the N-terminal binding domain (NTD) of the spike protein, must be studied in depth to devise new therapeutic options. Structural variants reported in the RBD and NTD may play essential roles in the increased pathogenicity of this SARS-CoV-2 new variant. We explored the binding differences and structural-dynamic features of the B.1.618 variant using structural and biomolecular simulation approaches. Our results revealed that the E484K mutation in the RBD slightly altered the binding affinity through affecting the hydrogen bonding network. We also observed that the flexibility of three important loops in the RBD required for binding was increased, which may improve the conformational optimization and consequently binding of the new variant. Furthermore, we found that deletions of Tyr145 and His146 at the NTD reduced the binding affinity of the monoclonal antibody (mAb) 4A8, and that the hydrogen bonding network was significantly affected consequently. This data show that the new B.1.618 variant is an antibody-escaping variant with slightly altered ACE2–RBD affinity. Moreover, we provide insights into the binding and structural-dynamics changes resulting from novel mutations in the RBD and NTD. Our results suggest the need for further in vitro and in vivo studies that will facilitate the development of possible therapies for new variants such as B.1.618. This study explored the binding patterns of the wild type and B.1.618 variant using which revealed that the B.1.618 variant possess a stronger binding affinity for the host ACE2 and escape the neutralizing antibodies.

4.
Front Microbiol ; 12: 789062, 2021.
Article in English | MEDLINE | ID: covidwho-1581272

ABSTRACT

Mutations in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have made this virus more infectious. Previous studies have confirmed that non-structural protein 13 (NSP13) plays an important role in immune evasion by physically interacting with TANK binding kinase 1 (TBK1) to inhibit IFNß production. Mutations have been reported in NSP13; hence, in the current study, biophysical and structural modeling methodologies were adapted to dissect the influence of major mutations in NSP13, i.e., P77L, Q88H, D260Y, E341D, and M429I, on its binding to the TBK1 and to escape the human immune system. The results revealed that these mutations significantly affected the binding of NSP13 and TBK1 by altering the hydrogen bonding network and dynamic structural features. The stability, flexibility, and compactness of these mutants displayed different dynamic features, which are the basis for immune evasion. Moreover, the binding was further validated using the MM/GBSA approach, revealing that these mutations have higher binding energies than the wild-type (WT) NSP13 protein. These findings thus justify the basis of stronger interactions and evasion for these NSP13 mutants. In conclusion, the current findings explored the key features of the NSP13 WT and its mutant complexes, which can be used to design structure-based inhibitors against the SARS-CoV-2 new variants to rescue the host immune system.

5.
Comput Biol Med ; 141: 105170, 2022 02.
Article in English | MEDLINE | ID: covidwho-1588030

ABSTRACT

SARS-CoV-2, an RNA virus, has been prone to high mutations since its first emergence in Wuhan, China, and throughout its spread. Its genome has been sequenced continuously by many countries, including Pakistan, but the results vary. Understanding its genomic patterns and connecting them with phenotypic features will help in devising therapeutic strategies. Thus, in this study, we explored the mutation landscape of 250 Pakistani isolates of SARS-CoV-2 genomes to check the genome diversity and examine the impact of these mutations on protein stability and viral pathogenesis in comparison with a reference sequence (Wuhan NC 045512.2). Our results revealed that structural proteins mainly exhibit more mutations than others in the Pakistani isolates; in particular, the nucleocapsid protein is highly mutated. In comparison, the spike protein is the most mutated protein globally. Furthermore, nsp12 was found to be the most mutated NSP in the Pakistani isolates and worldwide. Regarding accessory proteins, ORF3A is the most mutated in the Pakistani isolates, whereas ORF8 is highly mutated in world isolates. These mutations decrease the structural stability of their proteins and alter different biological pathways. Molecular docking, the dissociation constant (KD), and MM/GBSA analysis showed that mutations in the S protein alter its binding with ACE2. The spike protein mutations D614G-S943T-V622F (-75.17 kcal/mol), D614G-Q677H (-75.78 kcal/mol), and N74K-D614G (-73.84 kcal/mol) exhibit stronger binding energy than the wild type (-66.34 kcal/mol), thus increasing infectivity. Furthermore, the simulation results strongly corroborated the predicted protein servers. Our analysis findings also showed that E, M, ORF6, ORF7A, ORF7B, and ORF10 are the most stable coding genes; they may be suitable targets for vaccine and drug development.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/virology , Genome, Viral , Humans , Molecular Docking Simulation , Mutation , Pakistan , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
6.
Front Microbiol ; 12: 703145, 2021.
Article in English | MEDLINE | ID: covidwho-1337656

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been continuously mutating since its first emergence in early 2020. These alterations have led this virus to gain significant difference in infectivity, pathogenicity, and host immune evasion. We previously found that the open-reading frame 8 (ORF8) of SARS-CoV-2 can inhibit interferon production by decreasing the nuclear translocation of interferon regulatory factor 3 (IRF3). Since several mutations in ORF8 have been observed, therefore, in the present study, we adapted structural and biophysical analysis approaches to explore the impact of various mutations of ORF8, such as S24L, L84S, V62L, and W45L, the recently circulating mutant in Pakistan, on its ability to bind IRF3 and to evade the host immune system. We found that mutations in ORF8 could affect the binding efficiency with IRF3 based on molecular docking analysis, which was further supported by molecular dynamics simulations. Among all the reported mutations, W45L was found to bind most stringently to IRF3. Our analysis revealed that mutations in ORF8 may help the virus evade the immune system by changing its binding affinity with IRF3.

7.
Interdiscip Sci ; 13(3): 521-534, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1330422

ABSTRACT

The prolific spread of COVID-19 caused by a novel coronavirus (SARS-CoV-2) from its epicenter in Wuhan, China, to every nook and cranny of the world after December 2019, jeopardize the prevailing health system in the world and has raised serious concerns about human safety. Multi-directional efforts are made to design small molecule inhibitors, and vaccines and many other therapeutic options are practiced, but their final therapeutic potential is still to be tested. Using the old drug or vaccine or peptides could aid this process to avoid such long experimental procedures. Hence, here, we have repurposed a small peptide (ATLQAIAS) from the previous study, which reported the inhibitory effects of this peptide. We used in silico mutagenesis approach to design more peptides from the native wild peptide, which revealed that substitutions (T2W, T2Y, L3R, and A5W) could increase the binding affinity of the peptide towards the 3CLpro. Furthermore, using MD simulation and free energy calculation confirmed its dynamics stability and stronger binding affinities. Per-residue energy decomposition analysis revealed that the specified substitution significantly increased the binding affinity at the residue level. Our wide-ranging analyses of binding affinities disclosed that our designed peptide owns the potential to hinder the SARS-CoV-2 and will reduce the progression of SARS-CoV-2-borne pneumonia. Our research strongly suggests the experimental and clinical validation of these peptides to curtail the recent corona outbreak.


Subject(s)
Computer Simulation , Coronavirus 3C Proteases/antagonists & inhibitors , Molecular Dynamics Simulation , Mutagenesis , Peptides/chemistry , Peptides/pharmacology , SARS-CoV-2/drug effects , Severe acute respiratory syndrome-related coronavirus , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/virology , Humans , Molecular Docking Simulation , Peptides/genetics , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Severe acute respiratory syndrome-related coronavirus/chemistry , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/enzymology , Thermodynamics , COVID-19 Drug Treatment
8.
Gene Rep ; 21: 100886, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1023577

ABSTRACT

Since December 2019, a severe pandemic of pneumonia, COVID-19 associated with a novel coronavirus (SARS-CoV-2), have emerged in Wuhan, China and spreading throughout the world. As RNA viruses have a high mutation rate therefore we wanted to identify whether this virus is also prone to mutations. For this reason we selected four major structural (Spike protein (S), Envelope protein (E), Membrane glycoprotein (M), Nucleocapsid phosphoprotein (N)) and ORF8 protein of 100 different SARS-CoV-2 isolates of fifteen countries from NCBI database and compared these to the reference sequence, Wuhan NC_045512.2, which was the first isolate of SARS-CoV-2 that was sequenced. By multiple sequence alignment of amino acids, we observed substitutions and deletion in S protein at 13 different sites in the isolates of five countries (China, USA, Finland, India and Australia) as compared to the reference sequence. Similarly, alignment of N protein revealed substitutions at three different sites in isolates of China, Spain and Japan. M protein exhibits substitution only in one isolates from USA, however, no mutation was observed in E protein of any isolate. Interestingly, in ORF8 substitution of Leucine, a nonpolar to Serine a polar amino acid at same position (aa84 L to S) in 23 isolates of five countries i.e. China, USA, Spain, Taiwan and India were observed, which may affect the conformation of peptides. Thus, we observed several mutations in the isolates thereafter the first sequencing of SARS-CoV-2 isolate, NC_045512.2, which suggested that this virus might be a threat to the whole world and therefore further studies are needed to characterize how these mutations in different proteins affect the functionality and pathogenesis of SARS-CoV-2.

9.
J Biomol Struct Dyn ; 40(1): 523-537, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-748265

ABSTRACT

The outbreak of the recent coronavirus (SARS-CoV-2), which causes a severe pneumonia infection, first identified in Wuhan, China, imposes significant risks to public health. Around the world, researchers are continuously trying to identify small molecule inhibitors or vaccine candidates by targeting different drug targets. The SARs-CoV-2 macrodomain-I, which helps in viral replication and hijacking the host immune system, is also a potential drug target. Hence, this study targeted viral macrodomain-I by using drug similarity, virtual screening, docking and re-docking approaches. A total of 64,043 compounds were screened, and potential hits were identified based on the docking score and interactions with the key residues. The top six hits were subjected to molecular dynamics simulation and Free energy calculations and repeated three times each. The per-residue energy decomposition analysis reported that these compounds significantly interact with Asp22, Ala38, Asn40, Val44, Phe144, Gly46, Gly47, Leu127, Ser128, Gly130, Ile131, Phe132 and Ala155 which are the critical active site residues. Here, we also used ADPr as a positive control to compare our results. Our results suggest that our identified hits by using such a complicated computational pipeline could inhibit the SARs-CoV-2 by targeting the macrodomain-1. We strongly recommend the experimental testing of these compounds, which could rescue the host immune system and could help to contain the disease caused by SARs-CoV-2.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Pharmaceutical Preparations , Humans , Immune System , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL